抓基礎(chǔ):不變應(yīng)萬變
把基礎(chǔ)知識(shí)和基本技能落到實(shí)處。唯有如此才能以不變應(yīng)萬變。比如,文科第22題是一道經(jīng)典題型,考查圓錐曲線上一點(diǎn)到定點(diǎn)距離,既考老師又考學(xué)生。所謂考老師是說這樣的題型你講過沒有,是怎么講的?學(xué)生的典型錯(cuò)誤(以定點(diǎn)為圓心作一個(gè)與橢圓相切的圓,再利用判別式等于0)是怎么糾正?正確解法(轉(zhuǎn)化為二次函數(shù)在某個(gè)區(qū)間上的最值)是怎么想到的?只有經(jīng)過這樣的教學(xué)環(huán)節(jié),學(xué)生才能真正理解。所謂考學(xué)生是說你自己做錯(cuò)了,老師重點(diǎn)講評了的經(jīng)典問題,你掌握了沒有?掌握的標(biāo)準(zhǔn)是能否順利解答相應(yīng)的變式問題。由于第(3)含有參數(shù),需要分類討論,能有效甄別考生的思維水平和運(yùn)算能力。本題以橢圓(解析幾何重點(diǎn)內(nèi)容之一)為載體,考查把幾何問題轉(zhuǎn)化為代數(shù)問題的能力(這是解析幾何的核心思想),以及含參數(shù)的二次函數(shù)求最值問題(也是代數(shù)中的重點(diǎn)和難點(diǎn)),一舉多得。
當(dāng)然,可能會(huì)有人認(rèn)為這道題形式不新,其實(shí),要求考題全新既無必要,也不可能,只要有利于高校選拔和中學(xué)教學(xué)就好,不必過分求新、求異。
理科的第22題相對較難,不少同學(xué)反映不好表述。若能從集合的包含關(guān)系這個(gè)角度考慮,則容易表述,部分考生是直接對兩個(gè)數(shù)列進(jìn)行分類,由于要用到一些多數(shù)學(xué)生不熟悉的整除知識(shí),因而感到困難,無法下手。這就體現(xiàn)基礎(chǔ)知識(shí)和基本技能的重要性。
盡管今年理科試卷在知識(shí)點(diǎn)分布上有些不盡如人意,但復(fù)習(xí)不能受此影響,仍然要全面、扎實(shí)復(fù)習(xí),不能留下知識(shí)點(diǎn)的死角,相應(yīng)的技能、技巧要牢固掌握,思想方法都要總結(jié)到位,這樣才能“不管風(fēng)吹浪打,勝似閑庭信步”。