索引質(zhì)量的高低對(duì)數(shù)據(jù)庫整體性能有著直接的影響。良好高質(zhì)量的索引使得數(shù)據(jù)庫性能得以數(shù)量級(jí)別的提升,而低效冗余的索引則使得數(shù)據(jù)庫性能緩慢如牛,即便是使用高檔的硬件配置。因此對(duì)于索引在設(shè)計(jì)之初需要經(jīng)過反復(fù)的測試與考量。那對(duì)于已經(jīng)置于生產(chǎn)環(huán)境中的數(shù)據(jù)庫,我們也可以通過查詢相關(guān)數(shù)據(jù)字典得到索引的質(zhì)量的高低,通過這個(gè)分析來指導(dǎo)如何改善索引的性能。下面給出了演示以及索引創(chuàng)建的基本指導(dǎo)原則,最后給出了索引質(zhì)量分析腳本。
1、查看索引質(zhì)量
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 --獲取指定schema或表上的索引質(zhì)量信息報(bào)告 gx_adm@CABO3> @idx_quality Enter value for input_owner: GX_ADM Enter value for input_tbname: CLIENT_TRADE_TBL -->如果我們省略具體的表名則會(huì)輸出整個(gè)schema的索引質(zhì)量報(bào)告 Table Table Index Data Blks Leaf Blks Clust IndexTable Rows Blocks Index Size MB per Key per Key Factor Quality ------------------------- ------------ ---------- ------------------------- ------- --------- --------- ------------ ------------- CLIENT_TRADE_TBL 6,318,035 278488 I_TDCL_ARC_STL_DATE_STOCK 62 312 13 171,017 5-Excellent I_TDCL_ARC_STL_DATE_CASH 62 318 13 174,599 5-Excellent I_TDCL_ARC_CANCEL_DATE 83 238 8 288,678 5-Excellent I_TDCL_ARC_INPUT_DATE 144 249 13 310,974 5-Excellent I_TDCL_ARC_TRADE_DATE 144 269 14 337,097 5-Excellent PK_CLIENT_TRADE_TBL 200 1 1 798,216 2-Good I_TDCL_ARC_GRP_REF_ID 144 1 1 811,468 2-Good UNI_TDCL_ARC_REF_ID 136 1 1 765,603 2-Good I_TDCL_ARC_CONTRACT_NUM 72 1 1 834,491 2-Good I_TDCL_ARC_SETTLED_DATE 61 299 5 380,699 1-Poor I_TDCL_ARC_ACC_NUM 184 624 3 3,899,446 1-Poor I_TDCL_ARC_PL_STK 176 218 1 4,348,804 1-Poor I_TDCL_ARC_INSTRU_ID 120 2,667 8 4,273,038 1-Poor --從上面的單表輸出的索引質(zhì)量可知,出現(xiàn)了4個(gè)處于Poor級(jí)別的索引,也就是說這些個(gè)索引具有較大的聚簇因子,幾乎接近于表上的行了 --對(duì)于這幾個(gè)索引的質(zhì)量還應(yīng)結(jié)合該索引的使用頻率來考量該索引存在的必要性 --對(duì)于聚簇因子,只能通過重新組織表上的數(shù)據(jù)來,以及調(diào)整相應(yīng)索引列的順序得以改善 --查詢單表上索引列的相關(guān)信息 gx_adm@CABO3> @idx_info Enter value for owner: GX_ADM Enter value for table_name: CLIENT_TRADE_TBL TABLE_NAME INDEX_NAME CL_NAM CL_POS STATUS IDX_TYP DSCD ------------------------- ------------------------------ -------------------- ------ -------- --------------- ---- CLIENT_TRADE_TBL I_TDCL_ARC_ACC_NUM ACC_NUM 1 VALID NORMAL ASC I_TDCL_ARC_CANCEL_DATE CANCEL_DATE 1 VALID NORMAL ASC I_TDCL_ARC_CONTRACT_NUM CONTRACT_NUM 1 VALID NORMAL ASC I_TDCL_ARC_GRP_REF_ID GRP_REF_ID 1 VALID NORMAL ASC I_TDCL_ARC_INPUT_DATE INPUT_DATE 1 VALID NORMAL ASC I_TDCL_ARC_INSTRU_ID INSTRU_ID 1 VALID NORMAL ASC I_TDCL_ARC_PL_STK STOCK_CD 1 VALID NORMAL ASC I_TDCL_ARC_PL_STK PL_CD 2 VALID NORMAL ASC I_TDCL_ARC_SETTLED_DATE SETTLED_DATE 1 VALID NORMAL ASC I_TDCL_ARC_STL_DATE_CASH STL_DATE_CASH 1 VALID NORMAL ASC I_TDCL_ARC_STL_DATE_STOCK STL_DATE_STOCK 1 VALID NORMAL ASC I_TDCL_ARC_TRADE_DATE TRADE_DATE 1 VALID NORMAL ASC PK_CLIENT_TRADE_TBL BUSINESS_DATE 1 VALID NORMAL ASC PK_CLIENT_TRADE_TBL REF_ID 2 VALID NORMAL ASC UNI_TDCL_ARC_REF_ID REF_ID 1 VALID NORMAL ASC --從上面的查詢結(jié)果可知,當(dāng)前表TRADE_CLIENT_TBL上含有13個(gè)索引,應(yīng)該來說該表索引存在一定冗余。 --大多數(shù)情況下,單表上6-7個(gè)索引是比較理想的。過多的索引導(dǎo)致過大的資源開銷,以及降低DML性能。
2、索引創(chuàng)建的基本指導(dǎo)原則
索引的創(chuàng)建應(yīng)遵循精而少的原則
收集表上所有查詢的各種不同組合,找出具有最佳離散度的列(或主鍵列等)創(chuàng)建單索引
對(duì)于頻繁讀取而缺乏比較理想離散值的列為其創(chuàng)建組合索引
對(duì)于組合索引應(yīng)考慮下列因素來制定合理的索引列順序,以下優(yōu)先級(jí)別由高到低來作為索引的前導(dǎo)列,第二列等等
列被使用的頻率
該列是否經(jīng)常使用“ = ”作為常用查詢條件
列上的離散度
組合列經(jīng)常按何種順序排序
哪些列會(huì)作為附件性列被添加
3、索引質(zhì)量分析腳本
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 --script name: idx_quality.sql --Author : Leshami --Blog: http://blog.csdn.net/leshami --index quality retrieval SET LINESIZE 145 SET PAGESIZE 1000 SET VERIFY OFF CLEAR COMPUTES CLEAR BREAKS BREAK ON table_name ON num_rows ON blocks COLUMN owner FORMAT a14 HEADING 'Index owner'COLUMN table_name FORMAT a25 HEADING 'Table'COLUMN index_name FORMAT a25 HEADING 'Index'COLUMN num_rows FORMAT 999G999G990 HEADING 'Table|Rows'COLUMN MB FORMAT 9G990 HEADING 'Index|Size MB'COLUMN blocks HEADING 'Table|Blocks'COLUMN num_blocks FORMAT 9G990 HEADING 'Data|Blocks'COLUMN avg_data_blocks_per_key FORMAT 999G990 HEADING 'Data Blks|per Key'COLUMN avg_leaf_blocks_per_key FORMAT 999G990 HEADING 'Leaf Blks|per Key'COLUMN clustering_factor FORMAT 999G999G990 HEADING 'Clust|Factor'COLUMN Index_Quality FORMAT A13 HEADING 'Index|Quality' --SPOOL index_quality SELECT i.table_name, t.num_rows, t.blocks, i.index_name, o.bytes / 1048576 mb, i.avg_data_blocks_per_key, i.avg_leaf_blocks_per_key, i.clustering_factor, CASE WHEN NVL (i.clustering_factor, 0) = 0 THEN '0-No Stats' WHEN NVL (t.num_rows, 0) = 0 THEN '0-No Stats' WHEN (ROUND (i.clustering_factor / t.num_rows * 100)) < 6 THEN '5-Excellent' WHEN (ROUND (i.clustering_factor / t.num_rows * 100)) BETWEEN 7 AND 11 THEN '4-Very Good' WHEN (ROUND (i.clustering_factor / t.num_rows * 100)) BETWEEN 12 AND 15 THEN '2-Good' WHEN (ROUND (i.clustering_factor / t.num_rows * 100)) BETWEEN 16 AND 25 THEN '2-Fair' ELSE '1-Poor' END index_quality FROM dba_indexes i, dba_segments o, dba_tables t WHERE -- i.index_name LIKE UPPER ('%&&1%') AND i.owner = t.owner AND i.table_name = t.table_name AND i.owner = o.owner AND i.index_name = o.segment_name AND t.owner = UPPER('&input_owner') AND t.table_name LIKE UPPER('%&input_tbname%') ORDER BY table_name, num_rows, blocks, index_quality DESC; --SPOOL OFF; =========================================================================================== --script name: idx_info.sql --get the index column information by specified table set linesize 180 col cl_nam format a20 col table_name format a25 col cl_pos format 9 col idx_typ format a15 SELECT b.table_name, a.index_name, a.column_name cl_nam, a.column_position cl_pos, b.status, b.index_type idx_typ, a.descend dscd FROM dba_ind_columns a, dba_indexes b WHERE a.index_name = b.index_name AND owner = upper('&owner') AND a.table_name LIKE upper('%&table_name%') ORDER BY 2, 4;
更多信息請(qǐng)查看IT技術(shù)專欄