考試科目名稱:實變函數(shù)
考試內(nèi)容范圍:
一、實數(shù)集的勒貝格測度
1. 要求考生掌握集合的定義及其運算
2. 要求考生掌握一維開集,閉集的定義和結(jié)構(gòu)
3.要求考生掌握有界集的外測度,內(nèi)測度和測度的定義及其性質(zhì)
二、勒貝格可測函數(shù)
1. 要求考生掌握可測函數(shù)的性質(zhì)
2.要求考生掌握可測函數(shù)的收斂性,包括近一致收斂,依測度收斂及幾乎處處收斂
3.要求考生會用葉果洛夫定理,黎茲定理
三、勒貝格積分
1. 要求考生掌握勒貝格積分的定義及其簡單性質(zhì)
2.要求考生掌握積分序列的收斂性(勒維定理,法都定理,控制收斂定理)
3.要求考生掌握黎曼積分與勒貝格積分的關(guān)系,并會用黎曼積分計算勒貝格積分
考試總分: 75分 考試時間:1.5小時 考試方式:筆試
考試題型: 計算題(30分)
證明題(45分)
更多學(xué)歷考試信息請查看學(xué)歷考試網(wǎng)