年齡問題在我們行測考試當(dāng)中,并不是年年都會出現(xiàn),它有著輪回考察的特點,也就是今年出現(xiàn)了,可能要隔幾年才會再次出現(xiàn),這也為我們的備考提供了一定的方向。既然年齡問題是個小題型,那么熟諳技巧就非常重要了,它能幫助我們快速得出答案。
一、年齡差不變—列方程的核心
【例1】10年前爸爸的年齡是兒子年齡的7倍,15年后,爸爸的年齡是兒子的2倍。則現(xiàn)在爸爸的年齡是多少歲?( )
A.45 B.50 C.55 D.60
解析:題目都涉及到了兩人年齡,所以我們可以通過年齡差不變找等量關(guān)系。設(shè)兒子10年前年齡是x,則此時他們之間的年齡差為6x,15年后,此時兒子是x+10+15=25+x,此時他們之間的年齡差是25+x,由題意可知6x=x+25,得x=5,那么10年前爸爸35歲,現(xiàn)在爸爸45歲。在這道題中年齡差成了一個衡量年齡的基準量,用它來代表各個人物各時期的年齡,不但簡化了計算過程、不易出錯,更使得題目容易理解。
了解年齡問題的特點之后,我們來看一下年齡問題有什么解決技巧offcn。解決年齡問題一般使用的方法就是方程法。普通的年齡問題我們可以直接找等量關(guān)系列方程,但是有時題目比較復(fù)雜,涉及的關(guān)系比較多,直接找等量關(guān)系比較困難,此時我們可以使用下面兩個技巧。
二、每過一年所有人年齡加1 歲
【例2】祖父年齡70歲,長孫20歲,次孫13歲,幼孫7歲,問所少年后,三個孫子的年齡之和與祖父的年齡相等?()
A.10 B12 C15 D20
解析:長孫,次孫,幼孫現(xiàn)在的年齡和是20+13+7=40,如果設(shè)x年后三個孫子的年齡之和與祖父的年齡相等,則祖父的年齡增加了x歲,而三個孫子的年齡和增加了3x歲,故可列方程70+x=40+3x,可解得x=15.故選C。這就是考察的第一個重要特點。
1. 時間軸法:畫一條時間軸,年齡大的寫在前,年齡小的寫在后,設(shè)未知數(shù)表示年齡差,根據(jù)圖形找等量關(guān)系。
2. 表格法:適用于多人、多年份的問題。
更多信息請查看事業(yè)編‖公務(wù)員‖考試資料‖考試技巧